Áp dụng bất đẳng thức Cosi ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
\(\sqrt[3]{abc}\le\frac{a+b+c}{3}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}=9\)(đpcm)
Dấu "=" xảy ra \(a=b=c=\frac{1}{3}\)
Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng Bunyakovsky , có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=3.3=9\)
Đẳng thức xảy ra
<=> a = b = c = 1
\(1+\frac{1}{a};1+\frac{1}{b};1+\frac{1}{c}=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{abc}\)
\(=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{abc}+\frac{1}{abc}\)
Do: \(a+b+c=1\) nên \(\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{2}{abc}\)
Vì a,b,c > 0 áp dụng công thứ Cô-si ta có : \(a+b+c\ge3^8\sqrt{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^8\sqrt{\frac{1}{abc}}\)
P/s: Sorry tới đây là bí rồi, bạn tự giải quyết nốt nha
\(x = {1 \pm \sqrt{b^2-4ac} \over 2a \pm 1a}\)
Ta có: \(1+\frac{1}{a};1+\frac{1}{b};1+\frac{1}{c}=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)
\(\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{abc}+\frac{1}{abc}\)
Áp dụng BĐT Cô-si. Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
Suy ra \(\sqrt[3]{abc}\le\frac{a+b+c}{3}\)
Suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\left(a+b+c\right):3}=3.\frac{3}{a+b+c}=\frac{9}{a+b+c}=9\)(đpcm)
Dấu = xảy ra khi a = b = c = \(\frac{1}{3}\).
P/s: Sai thôi thôi, đừng trách mình nha.
Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9^{\left(1\right)}\)
Thật vậy:
Áp dụng bđt côsi cho bộ 3 số x,y, ta có:\(x+y+z\ge3\sqrt[3]{xyz}\) (1)
Áp dụng bđt côsi cho bộ 3 số\(\frac{1}{x},\frac{1}{y},\frac{1}{z}\) ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\) (2)
Từ (1) và (2)=> \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Đặt x=a; y=b; c=z ta có
\(\left(1\right)\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9^{\left(\text{đ}pcm\right)}\)( Vì a+b+c=1)