VK

Cho a+b+c=0 và a^2+b^2+c^2=14.Tính P=a^4+b^4+c^4

DT
4 tháng 7 2016 lúc 22:26

Ta có 

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Mà \(a^2+b^2+c^2=14\)

\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

Mà \(a+b+c=0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)

Ta lại có 

\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)

Thay (1) vào (2) 

\(a^4+b^4+c^4=196-2.49=98\)

nha - Cảm ơn 

CHÚC BẠN HỌC TỐT

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
NS
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết