\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow10+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right).0=25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=25\)
\(a^2+b^2+c^2=10\Leftrightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\)
\(\Leftrightarrow a^4+b^4+c^4+2.25=100\Leftrightarrow a^4+b^4+c^4=50\)
\(A=a^2\left(1-a^2\right)+b^2\left(1-b^2\right)+c^2\left(1-c^2\right)=a^2+b^2+c^2-\left(a^4+b^4+c^4\right)\)
\(A=10-50=-40\)