Ta có:
\((p-a)(p-b) \leq \frac{(p-a+p-b)^2}{4}=\frac{c^2}{4}\) tương tự rồi nhân lại, ta có đpcm.
Ta có bất đẳng thức phụ sau:
\(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\) \(\left(\text{*}\right)\) với \(a,b,c\) là độ dài ba cạnh của một tam giác \(\left(a,b,c>0\right)\)
Thật vậy, áp dụng bất đẳng thức AM-GM cho các cặp số dương:
\(\left(a+b-c\right)+\left(c+a-b\right)\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)
\(\Rightarrow\) \(2a\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)
\(\Rightarrow\) \(a^2\ge\left(a+b-c\right)\left(c+a-b\right)\) \(\left(1\right)\)
Tương tự áp dụng bất đẳng trên, ta cũng được:
\(b^2\ge\left(a+b-c\right)\left(b+c-a\right)\) \(\left(2\right)\) và \(c^2\ge\left(c+a-b\right)\left(b+c-a\right)\) \(\left(3\right)\)
Từ \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) \(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\right]^2\)
\(\Rightarrow\) \(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(a=b=c\) \(\Leftrightarrow\) tam giác đó là tam giác đều
Ta dễ dàng nhận thấy:
\(p-a=\frac{a+b+c}{2}-a=\frac{a+b+c-2a}{2}=\frac{b+c-a}{2}\)
\(p-b=\frac{a+b+c}{2}-b=\frac{a+b+c-2b}{2}=\frac{c+a-b}{2}\)
\(p-c=\frac{a+b+c}{2}-c=\frac{a+b+c-2c}{2}=\frac{a+b-c}{2}\)
Do đó, \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\frac{b+c-a}{2}.\frac{c+a-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)}{8}\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) ta có: \(\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) tam giác đó làm tam giác đều