Áp dụng BĐT AM-GM ta có:
\(\frac{4z}{4z+57}\ge\frac{1}{1+x}+\frac{35}{35+2y}\ge2\sqrt{\frac{35}{\left(1+z\right)\left(35+2y\right)}}\)
\(\frac{x}{1+x}\ge\frac{57}{4z+57}+\frac{35}{35+2y}\ge2\sqrt{\frac{35\cdot57}{\left(4z+57\right)\left(35+2y\right)}}\)
\(\frac{2y}{35+2y}\ge\frac{57}{4z+57}+\frac{1}{1+x}\ge2\sqrt{\frac{57}{\left(4z+57\right)\left(1+x\right)}}\)
\(\Rightarrow8abc\ge8\cdot1995\Rightarrow abc\ge1995\)
Đẳng thức xảy ra khi \(x=2;y=35;z=\frac{57}{2}\)