LN

cho a,b,c>0 thỏa mãn : \(\frac{1}{x+1}+\frac{35}{35+2y}\le\frac{4z}{4z+57}\)

tìm min xyz

TN
24 tháng 5 2017 lúc 21:33

Áp dụng BĐT AM-GM ta có:

\(\frac{4z}{4z+57}\ge\frac{1}{1+x}+\frac{35}{35+2y}\ge2\sqrt{\frac{35}{\left(1+z\right)\left(35+2y\right)}}\)

\(\frac{x}{1+x}\ge\frac{57}{4z+57}+\frac{35}{35+2y}\ge2\sqrt{\frac{35\cdot57}{\left(4z+57\right)\left(35+2y\right)}}\)

\(\frac{2y}{35+2y}\ge\frac{57}{4z+57}+\frac{1}{1+x}\ge2\sqrt{\frac{57}{\left(4z+57\right)\left(1+x\right)}}\)

\(\Rightarrow8abc\ge8\cdot1995\Rightarrow abc\ge1995\)

Đẳng thức xảy ra khi \(x=2;y=35;z=\frac{57}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
KS
Xem chi tiết