NT

cho a;b;c>0 thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3.\)CMR:

\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)

H24
28 tháng 10 2017 lúc 19:35

Đặt \(\frac{1}{a}=x\)\(\frac{2}{b}=y;\frac{3}{c}=z\)

=>VT = \(\frac{z^3}{x^2+z^2}+\frac{x^3}{y^2+x^2}+\frac{y^3}{y^2+z^2}\)

Ta có \(\frac{z^3}{x^2+z^2}=z-\frac{x^2z}{x^2+z^2}\ge z-\frac{x^2z}{2xz}=z-\frac{x}{2}\)

CMTT: 

=> VT \(\ge\frac{x+y+z}{2}=\frac{3}{2}\). Dấu = khi a=1; b=2; z=3

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TT
Xem chi tiết
MA
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LC
Xem chi tiết