Violympic toán 9

H24

Cho a,b,c>0 thoả mãn : a+b+c=3. CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)

TP
17 tháng 8 2019 lúc 10:50

\(VT=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)

\(=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\)

\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy :

\(VT\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(=3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
TL
17 tháng 8 2019 lúc 17:47

\(ab+ac+bc\le a^2+b^2+c^2\\ \Rightarrow3\left(ab+ac+bc\right)\le a^2+b^2+c^2+2\left(ab+ac+bc\right)\\ \Rightarrow3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2=9\\ \Rightarrow ab+ac+bc\le3\\ \Rightarrow2\left(ab+ac+bc\right)\le6\)

Áp dụng BDT Cô-si với 3 số dương:

\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{9}{a^2+1+b^2+1+c^2+1}\\ =\frac{9}{a^2+b^2+c^2+3}=\frac{9}{a^2+b^2+c^2+6-3}\\ \ge\frac{9}{a^2+b^2+c^2+2\left(ab+ac+bc\right)-3}=\frac{9}{\left(a+b+c\right)^2-3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NO
Xem chi tiết
BL
Xem chi tiết
NO
Xem chi tiết