Violympic toán 9

HT

Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:

\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)

AH
24 tháng 12 2018 lúc 23:49

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (5)

Các câu hỏi tương tự
DF
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
CN
Xem chi tiết
AX
Xem chi tiết
H24
Xem chi tiết