Cho a,b,c>=0 thoả mãn a+b+c=1
Chứng minh rằng\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}>=7\)
cho abc thõa mãn ab+bc+ca=abc và a+b+c=1
chứng minh rằng (a-1).(b-1).(c-1)=0
Cho các số nguyên a,b,c khác 0 thỏa mãn điều kiện: \(\frac{5b+2c\left(4+c^6\right)}{a+b+c}=1\)
Chứng minh rằng: a7+3b7-2c chia hết cho 7
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
Cho a,b,c là các số thực dương thoả mãn : a/b=b/c=c/a
Tính S= (4a-5b+2019c)/(5a-5b+2020c)
Cho 3 số a,b,c thoả mãn a+b+c=0 . chứng minh rằng :
\(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\).
Bài 1:Cho 3 số dương a, b, c thoả mãn a + b + c\(\le\)2018. Chứng minh rằng
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)
Bài 1 giải các pt sau và diễn tập nghiệm trên trục số a) 2x-6>0 b) -3x+9>0 c)3(x-1)+5>(x+1)+3 d)x/3 - 1/2>x/6 Bài 2:a)cho a>b chứng minh 3a+7>3b+7 b)cho a >b chứng minh a+3>b+1 c) cho 5a -1>5b-1 hãy so sánh a và b Bài 3: 2x(x+5)=0 b) X^2-4=0 d) (x-5)(2x+1)+(x-5)(x+6)=0 Ở bài 1 câu a có dấu hoặc bằng nữa nha bài 2 câu c cũng vậy
Cho a,b,c≥ 0 thoả mãn aˆ2+bˆ2+cˆ2=8.CMR:
4(a+b+c-4)≤abc