Rất dễ dàng, chúng ta có:
\(VT-VP=\frac{2ab\left[\left(a+bc-b-c\right)^2+\left(c-1\right)^2\right]+c\left(b-1\right)^2\left[\left(a+b-c\right)^2+1\right]}{2ab+c\left(b-1\right)^2}\ge0\)
Đẳng thức xảy ra khi \(a=b=c=1\). Ta có đpcm.
Anh tth bày em didéplê mak e ko có bt đi nên dùng dirichlet tạm vậy.......
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc-ac-bc+c\ge0\)
\(a^2+b^2+c^2+2abc+1=\left(a-b\right)^2+\left(1-c\right)^2+2\left(ab+bc+ca\right)+2\left(abc-ac-bc+c\right)\)
Rất dễ thấy \(\left(a-b\right)^2\ge0;\left(1-c\right)^2\ge0;2\left(abc-ac-bc+c\right)\ge0\)
\(\Rightarrowđpcm\)
Có một cách khác dùng cô si :)
\(a^2+b^2+c^2+2abc+1=a^2+b^2+c^2+abc+abc+1\ge a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\)
Đặt \(a^2=x^3;b^2=y^3;c^2=z^3\)
Khi đó BĐT tương đương với:
\(x^3+y^3+z^3+3xyz\ge2\left(\sqrt{x^3y^3}+\sqrt{y^3z^3}+\sqrt{z^3x^3}\right)\)
Ta có:\(2\sqrt{x^3y^3}=xy2\sqrt{xy}\le xy\left(x+y\right)\)
Tương tự khi đó BĐT tương đương với:
\(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\) ( đúng theo BĐT Schur )