Vì `a,b,c>0` nên \(\dfrac{a}{a+b}<1\)
`=>` \(\dfrac{a}{a+b+c}<\dfrac{a}{a+b}<\dfrac{a+b}{a+b+c}\)
Tương tự
\(\dfrac{b}{a+b+c}<\dfrac{b}{b+c}<\dfrac{b+c}{a+b+c}\)
\(\dfrac{c}{a+b+c}<\dfrac{c}{c+a}<\dfrac{c+a}{a+b+c}\)
`=>` \(1<\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}<2\)