DD

cho a+b+c=0. Chứng minh a^3+b^3+c^3=3abc

VT
1 tháng 10 2016 lúc 17:53

Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

Bình luận (0)
HP
1 tháng 10 2016 lúc 20:43

a+b+c=0

=>a+b=-c

=>(a+b)3=-c3

=>a3+b3+3a2b+3ab2+c3=0

=>a3+b3+c3+3ab(a+b)=0

Mà a+b=-c

=>a3+b3+c3+3ab.(-c)=0

=>a3+b3+c3-3abc=0

=>a3+b3+c3=3abc

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
LK
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
LD
Xem chi tiết
TN
Xem chi tiết