cho a,b,c thuoc Z+ / abc =1/6
cmr \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}>=a+2b+3c+\frac{1}{a}+2b+3c\)
Thank
\(Cho\)\(a,b,c\in R^+\)\(v\text{à}\)\(abc=\frac{1}{6}\)
Chứng minh rằng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\)
Giúp mìk với
M=\(\frac{a^2+a-6}{a+1}\)+\(\frac{2b^2+2b-3}{b+1}\)+\(\frac{3c^2+3c-2}{c+1}\)
cho a,b,c>0 và a+2b+3c=6 tìm max M
cho a,b,c là các số dương thỏa mãn 6a+2b+3c=11
chứng minh : \(\frac{2b+3c+16}{1+6a}+\frac{6a+3c+16}{1+2b}+\frac{6a+2b+16}{1+3c}\ge15\)
Cho các số thực duognw a, b, c thỏa mãn abc=\(\frac{1}{6}\)
Chứng minh rằng 3+\(\frac{a}{2b}\)+\(\frac{2b}{3c}\)>= a+2b+3c+\(\frac{1}{a}\)+\(\frac{1}{3c}\)
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
Cho a,b,c>0.
Cm:\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)
cho a , b , c là 3 só thực dương thỏa mãn : a + 2b + 3c = 1 . Tìm max của \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
chứng minh \(\frac{a}{1+a}+\frac{2b}{2+b}+\frac{3c}{3+c}< hoac=\frac{6}{7}\)cho a,b,c>0.a+b+c=1