Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(a,b,c>0\)thỏa mãn \(a+2b+3c=10\)
Chứng minh \(a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\ge\frac{13}{2}\)
Cho a,b,c>0 ; abc=\(\frac{1}{6}\).C/m:\(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\)
Cho 3 số dương a;b;c thỏa mãn \(a+2b+3c\ge10\). Chứng minh rằng \(a+b+c+\frac{3a}{4}+\frac{9}{8b}+\frac{1}{c}\ge\frac{13}{2}\)
M=\(\frac{a^2+a-6}{a+1}\)+\(\frac{2b^2+2b-3}{b+1}\)+\(\frac{3c^2+3c-2}{c+1}\)
cho a,b,c>0 và a+2b+3c=6 tìm max M
chứng minh \(\frac{a}{1+a}+\frac{2b}{2+b}+\frac{3c}{3+c}< hoac=\frac{6}{7}\)cho a,b,c>0.a+b+c=1
Cho a,b,c.0 thỏa mãn: a+2b+3c=4;
Tìm GTNN của biểu thức; P=4a=7b+10c+\(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
Cho a,b,c>0 chứng minh \(\frac{2a^2}{2b+c}+\frac{2b^2}{2a+c}+\frac{c^3}{4a+4b}\ge\frac{1}{4}\left(2a+2b+c\right)\)
\(cho\hept{\begin{cases}a,b,c>0\\a+2b+3c\ge20\end{cases}}\)
cm
\(M=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\ge13\)
Cho a;b;c>0 và \(a^3+b^3+c^3=3\) tìm Max:
\(\frac{a^3}{b-2b+3}+\frac{2b^3}{c^3+a^2-2a-3c+7}+\frac{3c^3}{a^4+b^4+a^2-2b^2-6a+11}\)
Có CTV nào làm đc ko