Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn

H24

Cho ABC vuông tại A, đường cao AH. Vẽ đường tròn (I) có đường kính HB cắt
cạnh AB tại D. Vẽ đường tròn (K) đường kính HC cắt AC tại E.
a) Chứng minh tứ giác ADHE là hình chữ nhật.
b) Chứng minh AD.AB AE.AC  .
c) Cho AB 3cm,BC 5cm   . Tính DE và diện tích tứ giác DEKI.

NT
4 tháng 11 2023 lúc 20:31

a: Xét (I) có

ΔHDB nội tiếp

HB là đường kính

Do đó: ΔHDB vuông tại D

=>HD\(\perp\)AB

Xét (K) có

ΔCEH nội tiếp

CH là đường kính

Do đó: ΔCEH vuông tại E

=>HE\(\perp\)AC

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Xét ΔHAB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>AC=4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4(cm)

ADHE là hình chữ nhật

=>AH=DE=2,4(cm)

\(\widehat{EDI}=\widehat{EDH}+\widehat{IDH}\)

\(=\widehat{HAC}+\widehat{IHD}\)

\(=\widehat{HAC}+\widehat{HCA}=90^0\)

=>ED\(\perp\)DI

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{KHE}+\widehat{HAB}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>EK\(\perp\)ED

mà ED\(\perp\)DI

nên EK//DI 

Xét tứ giác EDIK có

EK//DI

ED\(\perp\)EK

Do đó: EDIK là hình thang vuông
\(DI+EK=\dfrac{1}{2}HB+\dfrac{1}{2}HC=\dfrac{1}{2}\cdot\left(HB+HC\right)=2,5\left(cm\right)\)

\(S_{EDIK}=\dfrac{1}{2}\cdot ED\cdot\left(EK+DI\right)\)

\(=\dfrac{1}{2}\cdot2,4\cdot2,5=3\left(cm^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TK
Xem chi tiết