Bài 3: Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác

ML

Cho ∆ABC vuông tại A, có AB=3cm, BC=5cm. a) Tính độ dài AC. So sánh các góc của ∆ABC b) Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD. Chứng minh rằng: ∆ABM=∆CDM. c) Chứng minh 2.BM < AB + BC VẼ HÌNH VÀ GIẢI GIÚP MÌNH VỚI 😭

NT
18 tháng 3 2021 lúc 22:11

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

Bình luận (0)

Các câu hỏi tương tự
SI
Xem chi tiết
LA
Xem chi tiết
MD
Xem chi tiết
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết