A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
Cho ∆ABC vuông tại A, có AB=3cm, BC=5cm. a) Tính độ dài AC. So sánh các góc của ∆ABC b) Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD. Chứng minh rằng: ∆ABM=∆CDM. c) Chứng minh 2.BM < AB + BC VẼ HÌNH VÀ GIẢI GIÚP MÌNH VỚI 😭
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh :
a) AB // CD
b) AB + AC > 2AM
c) AMB < AMC
Cho tam giác ABC, M là trung điểm của cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD. CMR:
a, tam giác MAB=tam giác MCD
b, BM<AB+BC/2
help me!!!!
1. Cho △ABC, M là điểm nằm trong △ABC. Gọi I là giao điểm của BM và AC. Chứng minh rằng:
a) MA + MB < IA + IB
b) MA + MB < AC + BC
2. Cho 2 điểm A, B nằm ngoài đường thẳng d và cùng nằm trên nửa mặt phẳng bờ d. Xác định vị trí điểm M trên đường thẳng d để AM + BM nhỏ nhất.
3. Cho △ABC (AB > AC). Tia phân giác của \(\widehat{BAC}\) cắt BC tại D. M là điểm nằm trên đoạn thẳng AD. Chứng minh rằng MB - MC < AB - AC
Cho tam giác ABC có AB =AC. Gọi D và E là hai điểm trên BC sao cho BD=DE=EC và AD=AE.
A) Chứng minh góc EAB= góc DAC.
B) Gọi M là trung điểm của BC. Chứng Minh rằng AM là tia phân giác của góc DAE
C) Gỉa sử góc DAE = 60 độ , có nhận xét gì về các góc của tam giác AED
Cho tam giác ABC cân AB = AC. Lấy E và F trên cạnh AB và AC sao cho BE=CF
a)Chứng minh tam giác AEF là tam giác cân
b)Chứng minh góc AEF = góc ACB
c) Lấy điểm K trên tia đối của tia CB sao cho CK=EF. Chứng minh tam giác FBK cân tại F
d)Chứng minh BC+EF < 2 BF
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC