EE

Cho △ABC vuông tại A có AB =3cm, AC =4cm
a) Tính BC. So sánh các góc của △ABC
b) Trên tia đối của tia AB lấy điểm D sao cho AB=AD. CM: △ABC=△ADC
c) Qua A kẻ đường thẳng song song với BC cắt DC tại M. CM: △AMC cân
d) BM cắt AC tại G. Tính CG

DL
24 tháng 4 2022 lúc 7:11

a).

 Áp dụng đl pytago vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2=3^2+4^2\Rightarrow BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

So sánh góc:

\(\widehat{C}< \widehat{B}< \widehat{A}\)

b) . Xét 2 t/g vuông : ABC và ADC có :

\(\widehat{CAB}=\widehat{CAD}=90^o\)

AC cạnh chung

\(AB=AD\left(theođề\right)\)

do đó : t/g ABC = t/g ADC ( cạnh góc vuông - cạnh góc vuông).

c) . Vì t/g ABC = t/g ADC 

=> \(\widehat{BCA}=\widehat{DCA}\left(1\right)\)

Vì AM // BC 

= > \(\widehat{CAM}=\widehat{BCA}\left(soletrong\right)\left(2\right)\) 

Từ (1) và (2) 

=> \(\widehat{DCA}=\widehat{CAM}\) ( 2 góc đều = góc BCA ) .

=> tam giác AMC cân ( 2 góc đáy bằng nhau).

d) . Từ đề ta suy ra :

G là trực tâm của t/g CBD 

=> \(CG=\dfrac{2}{3}AC=\dfrac{2}{3}.4=2,67\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
RR
Xem chi tiết
MB
Xem chi tiết
VM
Xem chi tiết
HQ
Xem chi tiết
MT
Xem chi tiết