Có : \(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b > 0 => b + 2001 > 0 => b(b+2001) > 0
+ Nếu a < b => ab + 2001a < ab + 2001b => \(\frac{ab+2001a}{b\left(b+2001\right)}< \frac{ab+2001b}{b\left(b+2001\right)}\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
+ Nếu a < b => ..............................................................................................................=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+ Nếu a = b => \(\frac{a}{b}=\frac{a+2001}{b+2001}\)