Chương I - Căn bậc hai. Căn bậc ba

H24

Cho a,b,c thuộc (0,1) thỏa mãn: abc=(1-a)(1-b)(1-c). Chứng minh rằng \(a^2+b^2+c^2>=\dfrac{3}{4}\)

AH
27 tháng 1 2019 lúc 20:31

Lời giải:

\(abc=(1-a)(1-b)(1-c)\Rightarrow \frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\)

Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b}; \frac{1-c}{c}\right)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{1}{x+1}; \frac{1}{y+1}; \frac{1}{z+1}\right)\)

Bài toán trở thành

Cho $x,y,z>0$ thỏa mãn $xyz=1$. CMR:

\(A=\frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2}\geq \frac{3}{4}\)

------------------------

Thật vậy:

Áp dụng BĐT Bunhiacopxky:

\((x+1)^2\leq (x+\frac{1}{y})(x+y)\Rightarrow \frac{1}{(x+1)^2}\geq \frac{y}{(xy+1)(x+y)}\)

\((y+1)^2\leq (y+\frac{1}{x})(y+x)\Rightarrow \frac{1}{(y+1)^2}\geq \frac{x}{(xy+1)(x+y)}\)

\(\Rightarrow A\geq \frac{y}{(xy+1)(x+y)}+\frac{x}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{x+y}{(xy+1)(x+y)}+\frac{1}{(z+1)^2}=\frac{1}{xy+1}+\frac{1}{(z+1)^2}\)

\(A\geq \frac{1}{\frac{1}{z}+1}+\frac{1}{(z+1)^2}=\frac{z^2+z+1}{(z+1)^2}(*)\)

\(\frac{z^2+z+1}{(z+1)^2}-\frac{3}{4}=\frac{(z-1)^2}{4(z+1)^2}\geq 0\Rightarrow \frac{z^2+z+1}{(z+1)^2}\geq \frac{3}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
QL
Xem chi tiết
VC
Xem chi tiết