Chương I - Căn bậc hai. Căn bậc ba

VC

cho a,b,c>0 và abc=1

chứng minh rằng

\(\dfrac{a+1}{a^2+a+1}+\dfrac{b+1}{b^2+b+1}+\dfrac{c+1}{c^2+c+1}\le1\)

LF
5 tháng 10 2017 lúc 22:44

\(BDT\Leftrightarrow\dfrac{\dfrac{1}{a}+\dfrac{1}{a^2}}{1+\dfrac{1}{a}+\dfrac{1}{a^2}}+\dfrac{\dfrac{1}{b}+\dfrac{1}{b^2}}{1+\dfrac{1}{b}+\dfrac{1}{b^2}}+\dfrac{\dfrac{1}{c}+\dfrac{1}{c^2}}{1+\dfrac{1}{c}+\dfrac{1}{c^2}}\le2\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(n,h,t\right)\) thì ta có :

\(\Leftrightarrow\dfrac{n+n^2}{1+n+n^2}+\dfrac{h+h^2}{1+h+h^2}+\dfrac{t+t^2}{1+t+t^2}\le2\)

\(\Leftrightarrow\dfrac{1}{1+n+n^2}+\dfrac{1}{1+h+h^2}+\dfrac{1}{1+t+t^2}\ge1\)

Đặt \(n=\dfrac{yz}{x^2};h=\dfrac{xz}{y^2};t=\dfrac{xy}{z^2}\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\)

\(\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+xy^2z+x^2z^2}+\dfrac{z^4}{z^4+xyz^2+x^2y^2}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)

Cần cm \(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)

\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\left(1\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)

Tương tự rồi cộng theo vế ta có \(\left(1\right)\) đúng

Khi \(a=b=c=1\)

Bình luận (2)
NT
4 tháng 10 2017 lúc 19:05

Sửa đề\(VP\le 2\) sau đó nó chính là 1 dạng của BĐT Vasc k cần thêm j cả :">

Bình luận (1)
VC
4 tháng 10 2017 lúc 9:14

mấy bác hộ em nốt nhé

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TT
Xem chi tiết
KA
Xem chi tiết
HP
Xem chi tiết
VC
Xem chi tiết
KA
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết