Chương I - Căn bậc hai. Căn bậc ba

VC

cho a,b,c là độ dài 3 cạnh tam giác thỏa mãn a+b+c=1. Chứng minh rằng

\(1< \dfrac{a}{\sqrt{a^2+c}}+\dfrac{b}{\sqrt{a+b^2}}+\dfrac{c}{\sqrt{c^2+b}}< 2\)

AH
2 tháng 10 2017 lúc 0:35

Lời giải:

Gọi biểu thức đã cho là $A$

Vế đầu tiên:

\(a,b,c>0;a+b+c=1\Rightarrow a,b,c<1\)

Do đó: \(a^2+c< a+c< a+b+c\)

\(\Rightarrow \frac{a}{\sqrt{a^2+c}}>\frac{a}{\sqrt{a+b+c}}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \frac{a}{\sqrt{a^2+c}}+\frac{b}{\sqrt{a+b^2}}+\frac{c}{\sqrt{c^2+b}}>\frac{a+b+c}{\sqrt{a+b+c}}=1\)

Vế sau:

Ta có: \(a^2+c=a^2+c(a+b+c)> a^2+ca+c^2\)

\(\Rightarrow \frac{a}{\sqrt{a^2+c}}< \frac{a}{\sqrt{a^2+ca+c^2}}\). Thực hiện tương tự với các phân thức còn lại thu được:

\(\Rightarrow A< \underbrace{\frac{a}{\sqrt{a^2+ac+c^2}}+\frac{b}{\sqrt{b^2+ba+a^2}}+\frac{c}{\sqrt{c^2+bc+b^2}}}_{M}\) \((1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(M^2\leq (1+1+1)\left(\frac{a^2}{a^2+ac+c^2}+\frac{b^2}{b^2+ba+a^2}+\frac{c^2}{c^2+bc+b^2}\right)\)

\(\Leftrightarrow M^2\leq 3\left(3-\frac{c^2+ac}{a^2+ca+c^2}-\frac{ab+a^2}{b^2+ab+a^2}-\frac{bc+b^2}{c^2+bc+b^2}\right)\)

\(\leq 3\left(3-\frac{c^2+ac}{3ac}-\frac{ab+a^2}{3ab}-\frac{bc+b^2}{3bc}\right)\) (AM-GM)

\(\Leftrightarrow M^2\leq 3\left[3-1-\frac{1}{3}(\frac{c}{a}+\frac{a}{b}+\frac{b}{c})\right]\leq 3(3-1-1)\)

(Do theo BĐT AM-GM: \(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\geq 3\) )

\(\Leftrightarrow M^2\leq 3\Rightarrow M\leq \sqrt{3}\) \((2)\)

Từ \((1),(2)\Rightarrow A<\sqrt{3}< 2\)

Bình luận (2)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SN
Xem chi tiết
TG
Xem chi tiết
QL
Xem chi tiết
HD
Xem chi tiết
VT
Xem chi tiết
TL
Xem chi tiết