cho a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1.cm abc+2(1+a+b+c+ab+ac+bc)>=0
cho a,b,c là 3 số nguyên thỏa mãn điều kiện ab+bc+ca=1 cmr (a^2+1)(b^2+1)(c^2+1) la mot so chinh phuong
giúp tớ với
cho a,b,c>0 thỏa mãn điều kiện a+b+c=1
chứng minh\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\ge\frac{1}{4}\)
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
a) cho a,b,c > 0 thỏa mãn điều kiện : ab+bc+ca=1 chứng minh rằng :
\(a^3+b^3+c^3\ge\frac{1}{\sqrt{3}}\)
b) cho a,b,c>0 thỏa mãn điều kiện : a+b+c=3abc tìm giá trị nhỏ nhất của biểu thức :
\(\frac{1}{a^5}+\frac{1}{b^5}+\frac{1}{c^5}\)
giúp mik với .
Cho các số a, b, c khác 0 thỏa mãn abc khác 1 và -1 và (ab+1)/b+(bc+1)/c+(ca+1)/a. cm a=b=c
cho các số thực dương a,b,c thỏa mãn abc=1 .CMR
1/2+a+ab +1/2+b+bc +1/2+c+ca _<3/4
cho số thực dương a,b,c thỏa mãn abc=1.CMR: (ab/2a+b+3ab)+(bc/2b+c+3bc)+(ca/2c+a+3ca)</=(1/2)
cho a,b,c > 0 thỏa mãn a^2 +b^2 +c^2=1 .CMR: 1/1-ab +1/1-bc +1/1-ca =< 9/2