Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Cho 3 so a, b, c thoa man (a + b + c)2 = 3(a2 + b2 + c2). Tim GTNN P = a2 + (a + 2)(b + c) + 2020
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Cho a,b,c thỏa mãn a+b+c=3, ab+bc+ca=3, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021
cho a,b,c thỏa mãn đồng thời a+b+c=6 và a^2+b^2+c^2=12
tính:\(P=\left(a-3\right)^{2020}+\left(b-3\right)^{2020}+\left(c-3\right)^{2020}\)
a)Tìm GTLN của B=5-x2+2x-4y2-4y
b)Cho a,b,c thỏa mãn a+b+c=6 và a+b2+c2=12
Tính giá trị của P=(a-3)2020+(b-3)2020+(c-3)2020
Cho a,b,c thỏa mãn \(\hept{\begin{cases}a+b+c=2020\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\end{cases}}\)
Chứng minh: một trong 3 số a,b,c phải có một số bằng 2020
cho a,b,c >0 thoa man a2+b2+c2=5/3 CM 1/a+1/b+1/c<1/abc
cac ban lam on giup minh voi
Cho \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\\\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=12\end{cases}}\)tính \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)