Cho tam giác ABC có góc A nhọn, vẽ tia Ax vuông góc với AB ( tia AC nằm giữa 2 tia AB và Ax) và trên đó lấy điểm E sao cho AE = AB. Vẽ tia Ay vuông góc với AC ( tia AB nằm giữa 2 tia Ay và AC) và trên đó lấy điểm F sao cho AF = AC.
a) CM: BF = CE
b) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BF, CE. Kẻ AM, AN. CMR: AM vuông góc với AN
Tam giác nhọn ABC có trung tuyến AM, đường cao BH. Đường vuông góc với AM tại A cắt BH kéo dài tại D. Trên tia đối của AD lấy E sao cho AD=AE. Chứng minh rằng EC vuông góc với AB.
Cho tam giác ABC vuông tại A (AB<AC), kẻ trung tuyến AM. Đường thẳng vuông góc với BC tại M cắt AC tại N. Trên tia đối của tia AC lấy điểm E sao cho AE=AN. Gọi H là giao điểm của BE và MA. Chứng minh:
a)AM= \(\frac{BC}{2}\)
b) Góc AMN= Góc ABN
c) BH=AC
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác góc B cắt AC tại D. Kẻ DH vuông góc với BC. Lấy điểm E trên cạnh AC sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt DH tại K. Qua B kẻ đường vuông góc với EK tại I. Chứng minh:a, BA = BH (Đã chứng minh)b, Góc DBK = 45 độ (Đã chứng minh)c, BC = IK + ACMong được mọi người giúp đỡ! Em xin cảm ơn trước ạ!
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM= CN
a) CM: tam giác AMN cân
b) Kẻ BE vuông góc với AM ( E thuộc AM ) và CF vuông góc với AN ( F thuộc AN). CM: tam giác BME= tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. CM: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau tại H. CM: 3 điểm A, O, H thẳng hàng
giúp mình nhé, mình cần gấp lắm
cho tam giác ABC cân tại A, gọi M là trung điểm của BC.
B) Vẽ BE vuông góc với với AC tại E, CF vuông góv AB tại F. CM: AE=AF c) Trên tia AM lấy điểm K bất kì sao cho AM<AK CM: AC-AF>KF-KC
Cho tam giác ABC vuông tại A(AB<AC). Kẻ các đường phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc với BC cắt BC tại E. Trên tia đối của tia AC lấy điểm F sao cho AF=BE.
a,Chứng minh:E,D,F thẳng hàng
b,Từ M kẻ đường thẳng vuông góc với BC cắt AC tại N. Chứng minh MB=MN
Cho tam giác ABC cân tại A, trên cạnh BC lấy 2 điểm B và F sao cho BE=CF (E,F nằm ngoài cạnh BC). Kẻ BH vuông góc với AE và CK vuông góc với AF. Gọi M trung điểm của BC. Chứng minh rằng AM. BH và CK đồng quy..
Cho tam giác ABC có AB=AC. Trên tia đối của tia BC lấy điểm M và trên tia đối của CB lấy điểm N sao cho BM=CN.
a) Chứng minh AM=AN
b) Kẻ BE vuông góc với AM, CF vuông góc với AN (E thuộc AM, F thuốc AN). Chứng minh tam giác BME= tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là phân giác của góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau tại H. Chứng minh 3 điểm A,O,H thẳng hàng