Theo bất đẳng thức Cô-Si ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)
\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\) (ĐPCM)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Theo bất đẳng thức Cô-Si ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)
\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\) (ĐPCM)
cho \(a^2+b^2+c^2=1\). cm:\(\frac{a+b}{1-ab}+\frac{b+c}{1-bc}+\frac{a+c}{1-ca}\ge3\left(a+b+c\right)\)
Cho a,c,b dương t/m a+b+c+ab+bc+ac = 6abc
CM : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
cho a,b,c>0 và a+b+c+ab+ac+bc=6abc
c/m\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Cho a,b,c > 0
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}\ge3\)
CM; \(abcd< \frac{1}{81}\)
cho a,b,c \(\ge0\); ab+bc+ca >0
cmr \(\sqrt{\frac{a^2+1}{b+c}}+\sqrt{\frac{b^2+1}{c+a}}+\sqrt{\frac{c^2+1}{a+b}}\ge3\)
Cho a,b,c > 0 thỏa mãn a+b=3-c . CMR:
\(a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(ab+bc+ca\right)\)
Cho a + b +c =3 , a, b, c dương
CM
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Cho a;b;c>0 và a+b+c=3. Chứng minh \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
1 . cho a, b, c là 3 số thực dương thỏa mãn a+b+c=1
Tìm GTLN \(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2 . Cho các số thực a , b , c > 0 thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)