H24

Cho a,b,c là độ dài 3 cạnh tam giác, p là nửa chu vi, cmr:

\(\dfrac{a}{p-a} + \dfrac{b}{p-b} + \dfrac{c}{p-c} >= 6\)

TC
8 tháng 7 2023 lúc 9:43

BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)

Áp dụng BĐT Svac-xơ, ta có:

\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:

\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:

\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)

Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)

Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Bình luận (0)
TC
8 tháng 7 2023 lúc 9:48

Cách 2:

Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)

Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)

BĐT cần chứng minh trở thành:

\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)

Bình luận (2)