Cho a,b,c là độ dài 3 cạnh của tam giác.Chứng minh : a3+ b3+ 3abc > c3
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.Chứng minh:
\(\frac{1}{a+b}\);\(\frac{1}{b+c}\);\(\frac{1}{c+a}\)cũng là độ dài 3 cạnh tam giác
cho a,b,c là 3 cạnh của một tam giác.Chứng minh rằng : A=a/b+c-a +b/a+c-b +c/a+b-c >3
cho a,b,c là 3 cạnh của tam giác.Chứng minh :a/(b+c-a)+b/(a+c-b)+a/(a+b-c)>=3
Cho A = 4a2b2 _ (a2+b2_c2)2 trong đó a,b,c là độ dài 3 cạnh của tam giác.Chứng minh A < 0
Cho a,b,c là độ dài 3 cạnh tam giác.Chứng minh rằng:
\(\frac{c^n}{a+b-c}+\frac{b^n}{a-b+c}+\frac{a^n}{-a+b+c}\ge a^{n-1}+b^{n-1}+c^{n-1}\) với \(\forall n\in N\)
cho a, b, c là độ dài của 1 tam giác.Chứng minh a2-b2-c2+2bc>2
Cho a, b ,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: abc lớn hơn hoặc bằng (a+b-c)(a+c-b)(b+c-a)
1,Cho a,b,c là độ dài ba cạnh của tam giác.Chứng ming rằng:
a/(a+b)+b/(a+c)+c/(a+b)<2
2,Chung minh rằng B=10n-9n-1 chia hết cho 27 với n thuộc N*
3,Cmr n2+11n+2 không chia hết cho 12769