HC

Cho a,b,c là độ dài 3 cạnh của một tam giác . Chứng minh \(a^2+b^2+c^2\le2\left(ab+bc+ca\right)\)

PQ
13 tháng 11 2018 lúc 18:04

Dấu "=" ko xảy ra ??? xem lại đề 

Theo bđt tam giác ta có : 

\(a< b+c\)\(\Leftrightarrow\)\(a^2< ab+ac\)

\(b< c+a\)\(\Leftrightarrow\)\(b^2< bc+ab\)

\(c< a+b\)\(\Leftrightarrow\)\(c^2< ac+bc\)

Cộng theo vế từng bđt trên ta có : 

\(a^2+b^2+c^2< ab+ac+bc+ab+ac+bc=2\left(ab+bc+ca\right)\) ( đpcm ) 

Chúc bạn học tốt ~ 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
HT
Xem chi tiết
TD
Xem chi tiết
PH
Xem chi tiết
NM
Xem chi tiết