cho a,b,c là các số thực dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
b, tìm GTNN của
\(M=x^{100}-10x^{10}+10\)
Giả sử a,b,c là các số thực dương thỏa mãn \(a\le b\le3\le c,c\ge b+1,a+b\ge c\)tìm GTNN của
\(M=\frac{2ab+a+b+c\left(ab-1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
cho a,b,c là các số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\).chứng minh rằng nếu \(c\ge a,c\ge b\) thì \(c\ge a+b\)
Cho các số thực a,b,c \(\ge\)0 thỏa mãn a+b+c=3abc
Tìm GTNN của \(A=\frac{bc}{a^3.\left(c+2b\right)}+\frac{ac}{b^3.\left(a+2c\right)}+\frac{ab}{c^3.\left(b+2a\right)}\)
cho a,b,c là 3 số thực dương thỏa mãn: \(4c+2b\ge a\left(b^2+c^2\right)\)
tìm gtnn của biểu thức : \(P=\frac{3}{b+c-a}+\frac{4}{a+c-b}+\frac{5}{a+b-c}\)
giúp mình với, thanks nhiều
Cho a; b; c là các số thực dương thỏa mãn a^2 + b^2 + c^2 = 3
Chứng minh: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge a+b+c\)
với \(a,b,c\) là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\),CMR
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{a+b+c}{2}\)
cho các số thực a;b;c khác 0 thỏa mãn a+b+c=abc và a2=bc.CM a2\(\ge\)3