Chuẩn hóa \(a+b+c=3\) thì cần c/m
\(\sqrt{\frac{a}{3-a}}+\sqrt{\frac{b}{3-b}}+\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{2}\)
Ta có BĐT phụ \(\sqrt{\frac{a}{3-a}}\ge\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}\)
\(\Leftrightarrow\frac{\frac{3\left(a-1\right)^2\left(3a-1\right)}{32\left(3-a\right)}}{\sqrt{\frac{a}{3-a}}+\frac{3\sqrt{2}}{8}a+\frac{\sqrt{2}}{8}}\ge0\forall0< a< 3\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\sqrt{\frac{b}{3-b}}\ge\frac{3\sqrt{2}}{8}b+\frac{\sqrt{2}}{8};\sqrt{\frac{c}{3-c}}\ge\frac{3\sqrt{2}}{8}c+\frac{\sqrt{2}}{8}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{3\sqrt{2}}{8}\left(a+b+c\right)+\frac{\sqrt{2}}{8}\cdot3=\frac{3\sqrt{2}}{2}\)
Ở trong cuốn Phân tích và bình giảng 345 bất đẳng thức chon lọc đọc thử m thấy BDT này ngược lại mới đúng