Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

TD

Cho a,b,c là các số thực dương
Chứng minh 

NL
23 tháng 3 2022 lúc 23:56

BĐT bên trái: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{2a}{b+c}}+\sqrt{\dfrac{2b}{c+a}}+\sqrt{\dfrac{2c}{a+b}}\)

Ta có: \(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\)

\(\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\ge\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

Nhân vế với vế và rút gọn:

\(\Rightarrow\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Lại có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

\(\Rightarrow\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\dfrac{2}{b+c}+\dfrac{2}{c+a}+\dfrac{2}{a+b}\right)\ge\left(\sqrt{\dfrac{2a}{b+c}}+\sqrt{\dfrac{2b}{c+a}}+\sqrt{\dfrac{2c}{a+b}}\right)^2\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{2a}{b+c}}+\sqrt{\dfrac{2b}{c+a}}+\sqrt{\dfrac{2c}{a+b}}\) (đpcm)

Bình luận (0)
NL
23 tháng 3 2022 lúc 23:59

BĐT bên phải:

\(\sqrt{\dfrac{2a}{b+c}}+\sqrt{\dfrac{2b}{c+a}}+\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}\)

Ta có:

\(VT=\dfrac{2a}{\sqrt{2a.\left(b+c\right)}}+\dfrac{2b}{\sqrt{2b\left(c+a\right)}}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)

\(\ge\dfrac{4a}{2a+b+c}+\dfrac{4b}{2b+c+a}+\dfrac{4c}{2c+a+b}\)

\(=\dfrac{4a^2}{2a^2+ab+ac}+\dfrac{4b^2}{2b^2+bc+ab}+\dfrac{4c^2}{2c^2+ac+bc}\)

\(\ge\dfrac{4\left(a+b+c\right)^2}{2a^2+2b^2+2c^2+2\left(ab+bc+ca\right)}\ge\dfrac{4\left(a+b+c\right)^2}{2a^2+2b^2+2c^2+2\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
ND
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết