Violympic toán 9

VT

cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\)

chứng minh \(\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\)

MS
12 tháng 3 2018 lúc 5:59

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(\dfrac{1}{2a^2+b^2}=\dfrac{1}{a^2+a^2+b^2}\le\dfrac{1}{9}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(\left\{{}\begin{matrix}\dfrac{1}{2b^2+c^2}\le\dfrac{1}{9}\left(\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\left(\dfrac{1}{c^2}+\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\end{matrix}\right.\)

Cộng theo vế:

\(L\le\dfrac{1}{9}\left(\dfrac{3}{a^2}+\dfrac{3}{b^2}+\dfrac{3}{c^2}\right)=\dfrac{1}{9}\left[3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\right]=\dfrac{1}{9}\)

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
KM
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
CN
Xem chi tiết
NH
Xem chi tiết