H24

Cho a,b,c là các số thực dương thỏa mãn a/a+1+b/b+1+c/c+1=2

Chứng minh rằng:ab+bc+ca>(hoặc)=12

TT
6 tháng 8 2020 lúc 16:12

Áp dụng bất đẳng thức Cauchy ta có

\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

tương tự ta có

 \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(c+1\right)\left(a+1\right)}};\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

khi đó ta được

\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\Rightarrow ab\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)

Áp dụng tương tự ta được\(bc\ge\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1};ca\ge\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

Cộng theo vế các bất đẳng thức trên ta được 

\(ab+bc+ca\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

mặt khác theo bất đẳng thức Cauchy ta lại có

\(\frac{\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\ge3\)

suy ra \(ab+bc+ca\ge12\)vậy bất đẳng thức được chứng minh 

đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TL
Xem chi tiết
VD
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
ND
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết