Cho a,b,c la cac so thuc >0
Cmr \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}>=1\)
cho a,b,c>0 va abc=1 : chung minh: \(A=\dfrac{a^5}{b^2\left(c+3\right)}+\dfrac{b^5}{c^2\left(a+3\right)}+\dfrac{c^5}{a^2\left(b+3\right)}\ge\dfrac{3}{4}\)
cho a,b,c>0 va abc=1 : chung minh:
\(Â=\dfrac{a^5}{b^2\left(c+3\right)}+\dfrac{b^5}{c^2\left(a+3\right)}+\dfrac{c^5}{a^2\left(b+3\right)}\ge\dfrac{3}{4}\)
CHo \(a,b,c\ge0\)thỏa mãn \(a^3+b^3+c^3=3\)CMR : \(a^3b^4+b^3c^4+c^3a^4\le3\)
Cho a,b,c la các số thực thỏa mãn a+b+c=3
CMR \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}< =5\)
Xét 3 số thực a, b, c thay đổi và thỏa mãn điều kiện \(\hept{\begin{cases}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{cases}}\). Chứng minh rằng biểu thức \(Q=\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}\)có giá trị không đổi.
CHO CÁC SỐ THỰC DƯƠNG a,b,c CHỨNG MINH RẰNG
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)
Cho 3 số thực dương a,b,c thỏa mãn a+b+c=1
Chứng minh rằng
\(\frac{a^3}{a+bc}+\frac{b^3}{b+ca}+\frac{c^3}{c+ab}\ge1\)