MH

Cho a,b,c là các số thực bất kì, chứng mình rằng:

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

NN
9 tháng 2 2022 lúc 9:45

\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)

Ta chọn \(k=2\)hay nhân 2 vế với 4

*Xét hiệu 2 vế bất đẳng thức.

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)

\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)

\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
PN
Xem chi tiết
LP
Xem chi tiết