Ôn tập toán 7

DT

Cho a,b,c là các số hữu tỉ khác 0 sao cho:\(\frac{a+b+c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)Tính giá trị bằng số của biểu thức M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

NP
24 tháng 11 2016 lúc 22:21

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

Bình luận (7)

Các câu hỏi tương tự
TK
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NS
Xem chi tiết
LH
Xem chi tiết
TC
Xem chi tiết
UN
Xem chi tiết