Ôn tập toán 7

UN

Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng tỏ tỉ lệ thức \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

HP
30 tháng 7 2016 lúc 20:53

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

\(=\left(\frac{a+c}{b+d}\right)^2\)

Mà \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)

Vậy \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(dpcm\right)\)

Bình luận (0)
TL
30 tháng 7 2016 lúc 20:59

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

     \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2-a^2-2ac-c^2}{b^2+d^2-b^2-2bd-d^2}=\frac{-2ac}{-2bd}=\frac{ac}{bd}\)

=>Đpcm

 

Bình luận (2)
HP
30 tháng 7 2016 lúc 20:48

Cái này..... khó giải thích

Bình luận (0)
IM
30 tháng 7 2016 lúc 20:51

Ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{a.d}\)

=> đpcm

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
NU
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết