Ôn tập toán 7

H24

Cho a,b,c khác 0 và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

Tính P=\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

TL
16 tháng 12 2016 lúc 12:42

Áp dụng tc của dãy tỉ số bằng nhau ta cso:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

Có: \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

Bình luận (0)
PD
16 tháng 12 2016 lúc 16:59

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,b+c=-a,c+a=-b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{-c}{a}\cdot\frac{-a}{b}\cdot\frac{-b}{c}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{a\cdot b\cdot c}=-1\)

Xét a+b+c\(\ne0\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a\cdot b\cdot c}=\frac{2c\cdot2a\cdot2b}{a\cdot b\cdot c}=8\)

Vậy P=8 hoặc P=-1

 

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
DT
Xem chi tiết
DA
Xem chi tiết
TC
Xem chi tiết
NS
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TL
Xem chi tiết