Ôn tập: Bất phương trình bậc nhất một ẩn

NT

Cho a,b,c là các số dương và a+b+c = 3. CM :

B= \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

MN
26 tháng 4 2019 lúc 21:05

\(3-B=\left(a-\frac{a}{1+b^2}\right)+\left(b-\frac{b}{1+c^2}\right)+\left(c-\frac{c}{1+a^2}\right)=\frac{b^2}{1+b^2}+\frac{c^2}{1+c^2}+\frac{a^2}{1+a^2}\le\frac{b^2}{2b}+\frac{c^2}{2c}+\frac{a^2}{2a}=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

=> \(B\ge\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1

Bình luận (0)
Y
26 tháng 4 2019 lúc 22:10

\(B=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}+\frac{b\left(c^2+1\right)-bc^2}{c^2+1}+\frac{c\left(a^2+1\right)-ca^2}{c^2+1}\)

\(\Leftrightarrow B=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)

\(\Leftrightarrow B=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)

+ \(b^2+1\ge2b\forall b\)

\(\Rightarrow\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

+ Tương tự ta cm đc :

\(\frac{bc^2}{c^2+1}\le\frac{bc}{2}\) . Dấu "=" xảy ra \(\Leftrightarrow c=1\)

\(\frac{ca^2}{a^2+1}\le\frac{ca}{2}\). Dấu '=" xảy ra \(\Leftrightarrow a=1\)

Do đó : \(\frac{ab^2}{a^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\le\frac{ab+bc+ca}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Do đó : \(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\le\frac{ab+bc+ca}{2}\le\frac{3}{2}\)

\(\Leftrightarrow-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\ge-\frac{3}{2}\)

\(\Leftrightarrow B=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)

\(\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
ET
Xem chi tiết
VB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết