Ôn tập: Bất phương trình bậc nhất một ẩn

VB

cho a,b,c>0 thõa mãn a*b*c=1

\(\frac{1}{a^2+2\cdot b^2+3}+\frac{1}{b^{2^{ }}+2\cdot c^2+3}+\frac{1}{c^2+2\cdot b^2+3}\le\frac{1}{2}\)

MP
4 tháng 7 2020 lúc 22:00

Áp dụng BĐT Cauchy, ta có :

\(a^2+b^2\ge2ab\)

\(b^2+1\ge2b\)

\(\Rightarrow\) \(a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\) \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\) ( 1 )

Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\) ( 2 )

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\) ( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) cộng vế theo vế, ta có :

\(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=\frac{ac}{ab.ac+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\) \(VT\le\frac{1}{2}.1=\frac{1}{2}\)

\(\Rightarrow\) đpcm

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TX
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết