Áp dụng BĐT Cauchy, ta có :
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2b\)
\(\Rightarrow\) \(a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\) \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\) ( 2 )
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\) ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) cộng vế theo vế, ta có :
\(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=\frac{ac}{ab.ac+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\) \(VT\le\frac{1}{2}.1=\frac{1}{2}\)
\(\Rightarrow\) đpcm