KL

cho a,b,c là các số dương và \(a^2+b^2+c^2=2\) chứng minh rằng 1/a+1/b-1/c<=1/abc

H24
8 tháng 7 2016 lúc 22:09

Ê Ngọc Mai sao ko viết bằng latex

Bình luận (0)
H24
9 tháng 7 2016 lúc 0:05

Chắc là giải như này

Ta có \(ab+ac+bc\le a^2+b^2+c^2=2\) (1)

\(2ab+1\ge2\sqrt{2ab}\ge2\) vì a,b dương(2)

(1)(2)=> \(ab+ac+bc\le2ab+1\). Suy ra \(ac+bc-ab\le1\)

Suy ra \(\frac{ac+bc-ab}{abc}\le\frac{1}{abc}\)=> đpcm

Bình luận (0)