Violympic toán 8

NH

Cho a, b, c > 0 và a + b + c = 3. Tìm GTNN của biểu thức \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

TP
6 tháng 8 2019 lúc 11:31

\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

\(A=\Sigma\left(a-\frac{ab^2}{1+b^2}\right)\)

Áp dụng bất đẳng thức Cô-si :

\(A\ge\Sigma\left(a-\frac{ab^2}{2b}\right)=\Sigma\left(a-\frac{ab}{2}\right)\)

\(=\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)\)\(\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
KB
Xem chi tiết
NA
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TP
Xem chi tiết
TA
Xem chi tiết
BM
Xem chi tiết