cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
cho a3+b3+c3=3abc. Tính Q=\(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c) ≥ 1
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\)
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
Chứng minh rằng nếu a, b, c là các số dương thỏa mãn abc = 1 thì a4 + b4 + c4 \(\ge\) a + b + c
Cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. Chứng minh rằng:
\(\frac{ab}{6+a-c}+\frac{bc}{6+b-a}+\frac{ca}{6+c-b}\le2\)
Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=1\)
chứng minh rằng \(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
cho các số dương a và b thỏa mãn a+b=1. chứng minh rằng \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)