Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Cho tam giác ABC và ba điểm A’, B’, C’ lần lượt nằm trên ba cạnh BC, CA, AB sao cho AA’, BB’, CC’ đồng quy. (A’, B’, C’ không trùng với các đỉnh của tam giác ABC). Chứng minh rằng:
\(\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Cho a,b,c là độ dài ba cạnh của một tam giác có chu vi là 3:
CMR: \(\sqrt{\frac{ab}{a+b-c}}+\sqrt{\frac{bc}{b+c-a}}+\sqrt{\frac{ca}{c+a-b}}\ge3\)
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{3a-b+c}+\frac{b}{3b-c+a}+\frac{c}{3c-a+b}\ge1\)
chờ a,b,c là các số thực dương thỏa mãn \(ab+bc+ac=\) \(3\)
chứng minh rằng \(\frac{bc+4}{a^2+4}+\frac{ca+4}{b^2+4}+\frac{ab+4}{c^2+4}\le3\le\frac{bc+2}{a^2+2}+\frac{ca+2}{b^2+2}+\frac{ab+2}{c^2+2}\)
Cho a, b và c là độ dài ba cạnh của một tam giác. Chứng minh rằng
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\ge\sqrt{\frac{b+c-a}{a}}+\sqrt{\frac{c+a-b}{b}}+\sqrt{\frac{a+b-c}{c}}\)
Cho a, b, c là độ dài 3 cạnh tam giác. Chứng minh rằng :
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)
Cho tam giác ABC nhọn có BC=a, CA=b, AB=c
Chứng minh rằng: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Cho a, b, c là độ dài ba cạnh của một tam giác. CMR:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\le\frac{7}{2}\)
Hỏi dấu bằng xảy ra khi và chỉ khi nào?