Chứng minh rằng nếu a,b,c > 0 thoả mãn a+b+c = 3 thì ab+a 3b2+10b+3 + bc+b 3c2+10c+3 + ca+c 3a2+10a+3 ≥
3 8
Cho biểu thức:
P=\(\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\)
a) rút gọn P
b) có giá trị nào của a,b để P=0
c) tính giá trị của P biết a,b thỏa mãn điều kiện: 3a2+3b2= 10ab và a>b>0
Cho 3 a 2 + 3 b 2 = 10 a b và b > a > 0. Tính giá trị của biểu thức P = a - b a + b
Cho hình vuông ABCD có O là giao điểm của hai đường chéo AC và BD. Trên cạnch AB lấy điểm M (M khác A, B). kẻ ME vuông góc với AC tại E, ME cắt AD tại F. Kẻ MP vuông góc với BD tại P, MP cắt BC tại Q.
a) Tứ giác MEOP là hình gì? Tại sao? b) Chứng minh tứ giác MFDB là hình thang cân.
c) Chứng minh Om là trung điểm của FQ. d) Tìm vị trí của M trên AB để độ dài EP nhỏ nhất.
Cho tứ giác ABCD, AC vuông góc với BD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. CMR: MP= NQ
Bài 8: Cho a, b thuộc R thỏa mãn: a+ b+ab=8. Tìm GTNN của B= a^2+b^2
Bài 9: Cho a, b thuộc R thỏa mãn: a+b+ab=35. Tìm GTNN của: C= a^2+b^2
Bài 10: Tìm n để: (n thuộc N)
a) n^2+5
b) n^2-n+1 là số chính phương
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Cho ab+bc+ac=1 Tìm GTNN của \(a^4+b^4+c^4\)
Cho ab+bc+ac =1 Tìm GTNN của \(a^4+b^4+c^4\)
Cho tam giác ABC nhọn . Trên BC lấy điểm M sao cho M khác B và C . Từ M kẻ MD song song với AC ( D thuộc AB ) . Từ M kẻ ME song song với AB ( E thuộc AC ) . Tìm vị trí điểm M sao cho DE có độ dài nhỏ nhất
Không được dùng định lí Ta-lét, tam giác đồng dạng