MT

Cho abc khác 1 và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\).Chứng minh a=b=c

HN
13 tháng 7 2016 lúc 8:10

Ta có : \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

Từ \(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{1}{c}-\frac{1}{b}\Leftrightarrow a-b=\frac{b-c}{bc}\)(1)

Tương tự : \(b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow b-c=\frac{c-a}{ac}\) (2) ; \(c+\frac{1}{a}=a+\frac{1}{b}\Leftrightarrow c-a=\frac{a-b}{ab}\)(3)

Nhân (1) , (2), (3) theo vế :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2b^2c^2}\right)=0\)

Vì abc khác 1 nên\(a^2b^2c^2\ne1\) \(\Rightarrow1-\frac{1}{a^2b^2c^2}\ne0\)

Do đó \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\Rightarrow\)a = b hoặc b = c hoặc c = a

Với a = b , từ giả thiết ta có b = c => a = b = cVới b = c , từ giả thiết ta có c = a => a = b = cVới c = a , từ giả thiết ta có a = b => a = b = c

Vậy a = b = c 

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết