TL

Cho △ABC. Gọi M, N lần lượt là trung điểm của BC, AC. Gọi H là điểm đối xứng của N qua M.

a) Chứng minh tứ giác BNCH và ABHN là hình bình hành.

b) △ABC thỏa mãn điều kiện gì thì tứ giác BCNH là hình chữ nhật

H24
14 tháng 5 2022 lúc 22:24

tham khảo

a/ xét tứ giác AMCH , ta có 
N là trung điểm AC [ gt] 
N là trung điểm HM [ vì H đối xứng N qua M] 
mà AC thuộc HM tại N 
suy ra ; AMCH là hình bình hành [ dấu hiệu nhận biết ]
có AMCH là hình bình hành [ cma] 
suy ra MC//AH [t/chat hình bình hành] M thuộc BC 
suy ra AH//BM [1]
lại có M là trung điểm của BC [ gt ]
suy ra BM=MC
mà AH=BM [ tứ giác AMCH là hình bình hành] [2] 
xét tứ giác ABMN , có ; 
AH //BM [cmt]
AH= BM [cmt]
suy ra ABMH là hình bình hành [ dấu hiệu nhận biết ]

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
LV
Xem chi tiết
AN
Xem chi tiết
LV
Xem chi tiết
LH
Xem chi tiết
HV
Xem chi tiết
DP
Xem chi tiết