Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)
\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)
Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)
\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)
(cái này để chứng minh bn thử biến đổi tương đương xem sao :)
Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)
\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)
Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)
Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)
Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)