§1. Bất đẳng thức

H24

Cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)

CMR: \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)

SC
9 tháng 9 2017 lúc 20:30

Nhận xét: Với x,y > 0 ta có:

\(4xy\le\left(x+y\right)^2\)

<=> \(\dfrac{1}{x+y}\le\dfrac{x+y}{4xy}\Leftrightarrow\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Xảy ra khi x = y

Áp dụng và bài ta có:

\(\dfrac{1}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)

Tương tự: \(\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\);

\(\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\)

Cộng 3 vế bđt có:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
QA
Xem chi tiết
NV
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
MD
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
NT
Xem chi tiết
LV
Xem chi tiết